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ANALYSIS OF PLASTIC THERMAL STRESSES AND STRAINS IN 

FINITE THIN PLATE OF STRAIN-HARDENING MATEZ3IAL 

by Ernest Roberts, Jr., and Alexander Mendelson 

Lewis Research Center 

SUMMARY 

A practical method for obtaining the plastic deformations in a biaxial 
stress field is presented. The method is numerical, utilizing a system of 
successive approximations. There are no limitations regarding boundaries, 
loading history, stress-strain curves, or temperature dependence of material 
properties. The incremental theory of plasticity is used. Two examples are 
presented for strain-hardening materials: a thermally loaded long rectangular 
plate, and a thermally loaded squaze plate. Where possible, comparisons are 
made with existing solutions. The validity of certain approximations to the 
solution is also investigated. 

INTRODUCTION 

There is currently considerable interest in stress analysis of structures 
that have been permitted to deform plastically. 
structures, some pressure vessels, for example, can be permitted to deform to 
beyond the elastic limit without limiting their usefulness. Furthermore, the 
life of cyclically loaded structures has been shown to depend on the amount of 
plastic flow per cycle (ref. 1). 
to one-dimensional stress fields or neglect strain-hardening or both. 

Certain statically loaded 

Available solutions, however, are limited 

There are several closed-form solutions to elementary problems using 
ideally plastic materials (ref. 2) and a few for strain-hardening materials 
(ref. 3), but they are confined to one-dimensional stress fields. The numeri- 
cal procedure developed in reference 4 permits solutions to a much wider vari- 
ety of one-dimensional problems with strain-hardening by using successive 
approximations. Some two-dimensional problems have been solved in reference 5 
by using finite-difference techniques, but these neglect strain-hardening. 

A method is described that combines the established numerical techniques 
of finite differences with the successive approximation technique of refer- 
ence 4 to obtain an accurate solution to two-dimensional plane-stress or plane- 
strain problems for a plastically deforming work-hardening material. The only 
assumptions necessary are the usual ones for plane-elastostatic problem, the 
classical conditions of continuity, homogenity, isotropy, and those assumptions 



associated with numerical differentiation. In the illustrative examples rec- 
tangular boundaries are assumed together with linear strain hardening and mate- 
rial properties independent of temperature. These restrictions, however, are 
not intrinsic to the present method. The method may easily be extended to more 
complicated boundaries, stress-strain curves, and material properties. 

The report presents the solution to two problems: a thermally loaded long 
rectangular plate, which is essentially a one-dimensional problem, and a 
thermally loaded square plate, which is a two-dimensional problem. 
ment of this report uses a stress-strain curve representative of strain- 
hardening materials, the von Mises yield criterion, and its associated flow 
rule, which results in the Prandtl-Reuss stress-strain relations; that is, the 
so called incremental theory of plasticity is used. Comparisons were made with 
other solutions, where they exist, and were found to be in good agreement. The 
problems were chosen to illustrate the use of the method and are not indicative 
of any limitations regarding boundaries, loading, stress-strain curves, or 
material properties. 

The treat- 

SYMBOLS 

E Young's modulus 

g function of plastic-strain increments 

kl constant of proportionality defining temperature function 

m dimens ionless tangent modulus 

n integer 

T temperature function 

x spanwise coordinate 

y chordwise coordinate 

z thickness coordinate 

a linear coefficient of thermal expansion 

p span-to-chord ratio 

Y shear strain 

E normal strain 

A constant 

v Poisson's ratio 

0 normal stress 
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7 shear stress 

cp Airy's stress function 

a2 a2 

ax ay V2 harmonic operator, 2 + 2 

a4 a4 + 2  a4 
ax4 ax2ay2 ay4 

+ -  V4 biharmonic operator, - 

Subscripts : 

e equivalent o r  e f fec t ive  

i row index 

j column index 

p p l a s t i c  component 

t t o t a l  

x spanwise coordinate 

y chordwise coordinate 

Z thickness coordinate 

Superscripts:  

e e l a s t i c  component 

* dimensionless quantity 

ANALYSIS 

The problem of determining the e l a s t i c  s t a t e  of s t r e s s  i n  a th in  rectangu- 
lar  p la te  of uniform thickness i s  i n  the category of generalized plane-stress 
problems. Such problems a re  frequently s t a t ed  i n  terms of Airy 's  s t r e s s  
function, whereby the problem is  reduced t o  solving a s ingle  fourth-order par- 
t i a l  d i f f e r e n t i a l  equation ( r e f .  6 ) .  The method has been applied successf i l ly  
t o  thermally loaded rectangular p la tes  with numerical procedures being used t o  
solve t h i s  p a r t i a l  d i f f e r e n t i a l  equation with i t s  associated boundary condi- 
t ions  ( r e f .  7 ) .  A similar d i f f e r e n t i a l  equation can be derived f o r  defining 
the  p l a s t i c  s t a t e  of stress i n  such a p la te  from the  conditions of equilibrium 
and compatibil i ty and a s e t  of s t r e s s - s t r a in  r e l a t ions  including p l a s t i c  t e r m s .  
The stress-strain r e l a t ions  with temperature terms and p l a s t i c - s t r a in  terms 
added a re  ( i n  the coordinate system defined i n  f i g .  1) as follows: 
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( I C  1 
Figure 1. - Unnormalized coordinate system used to determine state of stress in l + v  thermal ly  loaded thin flat plate. y = -  E z + C m p + m p  

where the  c l s  represent t h e  accumulation of p l a s t i c  s t r a i n  increments from the  
beginning of the  loading h is tory  up t o  but not including the  present increment. 

The equilibrium and compatibil i ty r e l a t ions  are 

The incremental p l a s t i c i t y  re la t ions  derived from the von Mises y ie ld  
c r i t e r i o n  and i t s  associated f l o w  rule ,  as presented i n  reference 2,  a r e  

where 

A€ 
A€y,p = [2OY - ox] 

and 

- - + '2 - ' 0 + 3z2 
'e - Y X Y  
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Finally, a r e l a t ion  i s  needed defining the s t r e s s - s t r a in  curve above the 
This r e l a t ion  depends on the material and need not be an exp l i c i t  y i e ld  point.  

function. 
s iderat ion,  the function can be wri t ten as  follows: 

If p l a s t i c  f l o w  occurs during the  increment of loading under con- 

(I 

Figure 2. - Stress-strain curve for sample 
problem. Dimensionless tangent mcdu- 
Ius, 0.1. 

For example, as can be seen from f igure  2, f o r  
l i nea r  strain-hardening 

Equations (1) t o  ( 7 ) ,  along with the condi- 
t i o n  t h a t  a l l  normal and shear s t resses  vanish on 
the  boundaries, completely define t h i s  problem. 
The problem w i l l  be solved by combining equations 
t ions (1) t o  (3 )  and by introducing a stress 
function. 
expressed i n  terms of the s t resses  by combining 
equations (1) and (3 ) .  

F i r s t  the  compatibility r e l a t ion  i s  

This process yields  

(5 + G) EcLT - 2 (  1 + v ) a2 a2 
ax2 ay a x T + -  ay2 ux 

+ -  a2 a y - v -  a2 u y - v -  a2 + + g = O  
ax2 by2 ax 

where 

(8) 

Introducing the s t r e s s  function cp = cp(x,y) defined by 

and subs t i tu t ing  in to  equation (8 )  y ie ld  

Differentiating equation (2a) with respect to 
spect t o  y and adding y i e ld  

x and equation (2b) with re-  
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Subst i tut ing t h a t  expression i n t o  equation (10) produces the  following p a r t i a l  
d i f f e r e n t i a l  equation t h a t  must be solved by using su i tab le  boundary condi- 
t ions : 

v4cp + V ~ E ~ T  + g = o (12)  

Boundary conditions f o r  equation ( 1 2 )  derived from the  vanishing of a l l  
normal and shear stresses on the  boundaries are 

a cp(x,l) = 0 ay 

Equation ( 1 2 )  is  nonlinear, making a closed-form solution d i f f i c u l t  to obtain; 
therefore,  an i t e r a t i v e  method i s  used i n  t h i s  paper. 
have become commonplace i n  recent years with the  increased use of high-speed 
electronic  computing equipment. 
difference-equation form a t  a la rge  number of points  i n  the rectangular region, 
and the resu l t ing  system of algebraic equations yields  a value of 
point.  

I t e r a t i v e  procedures 

The d i f f e r e n t i a l  equation i s  rewri t ten i n  

cp a t  each 
The procedure used i n  s o  doing i s  described i n  appendix A .  

Reference 4 u t i l i z e s  a method of successive approximations, which i s  
readily adapted t o  the  present problem. 
l e n t  p l a s t i c  s t r a i n  and equivalent stress, a s  defined i n  equations (5)  and ( 6 ) ;  
these are the  quant i t ies  i n  a uniaxial ly  loaded system corresponding t o  the 
b i ax ia l  s t a t e  of stress i n  a plane s t r e s s  system. Briefly,  the  method is as 
follows : 

It operates on the quant i t ies  equiva- 

(1) Select  a value of load. 

( 2 )  Guess i n i t i a l  values of t he  p l a s t i c - s t r a in  increments. 

(3 )  Calculate the equivalent p l a s t i c - s t r a in  increment from equation (5) .  

( 4 )  Determine the  value of 0, from the  s t r e s s - s t r a in  curve f o r  the mate- 
r ia l .  

( 5 )  Calculate g from equation (8)  by using the  current p l a s t i c - s t r a in  
increments. 

( 6 )  Solve equation ( 1 2 )  f o r  the  s t r e s s  function. 
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I' 

Calculate plastic 
values of 

(7) Calculate the stresses from equation (9). 

(8) Calculate a new set of plastic-strain increments from equations (4). 

(9) Repeat steps 3 to 8 until the newly calculated plastic-strain incre- 
ments are sufficiently close to the previous ones. 
strains, only one iteration is necessary. ) 

step 2. 

(Where there are no plastic 

(10) Increment the load, sum the plastic-strain increments, and return to 

Calculate ue f rom 
stress-strain curve 

Start 

i 
i 

I 

ReadAkkl 

Calculate elastic 
values of . 

Calculate elastic 
stresses 

I 

Recalculate plastic 
stresses 

resul ts  

Calculate new plastic - s t r a i n  increments 

"r 
Calculate remain ing 
stresses and strains 

Conierged 

Assume star t ing values 
of plastic strains 

1 I 1 

I No 

Figure 3. - Calculat ion procedure for iterative finite-difference method of solution. 
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This procedure may be applied only where there  i s  no unloading. When un- 
loading occurs, only the  e l a s t i c  component of t he  s t r a i n  i s  recovered. F u r -  
thermore, on reloading, no addi t ional  p l a s t i c  flow occurs u n t i l  the  stress a t  
which unloading occurred i s  reached. The d e t a i l s  of the  computational proce- 
dure w i l l  not be discussed i n  t h i s  repor t .  

It is  t o  be noted t h a t  the values of s t r e s s  produced by the  above opera- 
t ions  do not correspond t o  the  value of equivalent stress determined from the  
s t r e s s - s t r a in  curve u n t i l  convergence occurs. The procedure as described i n  
the  preceding paragraphs i s  outlined graphical ly  i n  f igure  3 (see p. 7 ) .  

DISCUSSION 

The presentation of t he  solut ion to a problem, such as the  one presented 
i n  t h i s  report ,  i s  of l i t t l e  value unless su f f i c i en t  checks a re  avai lable  t o  
i n s t i l l  a degree of confidence i n  i t s  use. 
avai lable  f o r  t h i s  problem. The solut ion f o r  loads too s m a l l  t o  produce plas- 
t i c  flow can be compared with the  solutLons presented i n  reference 8.  That 
reference discusses the  problem of an e l a s t i c  f l a t  p l a t e  of f i n i t e  dimensions 
subjected to a chordwise thermal gradient.  Reference 7 discusses a similarly 
loaded i n f i n i t e  s t r ip .  The solutions are iden t i ca l  along the  cen t r a l  chord of 
long rectangular p la tes .  For loads great  enough t o  produce p l a s t i c  flow, com- 
parison can be made with the problem considered i n  reference 3. Reference 3 
concerns i t s e l f  with the  semi-infinite p la te ,  but by the  pr inciple  of Saint-  
Venant t ha t  solut ion should be iden t i ca l  with the  solut ion f o r  a long rectangu- 
lar pla te  far from i t s  ends. Reference 8 v e r i f i e s  that statement i n  the  elas- 
t i c  range f o r  p la tes  having span-to-chord r a t i o s  of 3 or greater .  I n  summary, 
the  following comparisons can be made f o r  the  two problems under consideration: 
f o r  the rectangular p l a t e  the  e l a s t i c  so lu t ion  everywhere and the p l a s t i c  solu- 
t i o n  far from the  ends can be checked against  previous solutions; f o r  t h e  
square p l a t e  the e l a s t i c  solut ion everywhere can be compared with other solu- 
t ions .  A l l  the  comparisons w i l l  be made f o r  t he  case of a parabolic chordwise 
temperature d i s t r ibu t ion  T* = k1y2, where T* is  a dimensionalized tempera- 
t u re  fbnction. 

Fortunately, there  a re  a few checks 

Figure 4 compzres the  e l a s t i c  s t r e s s  d i s t r ibu t ion  i n  a 3 by 1 pla t e  sub- 

The f igures  are presented i n  terms of a dimensionless 
jected t o  a chordwise parabolic temperature d is t r ibu t ion  with the solut ion pre- 
sented i n  reference 8 .  
s t ress ,  the  r a t i o  of the  s t r e s s  t o  the  y i e ld  stress. Reference 8 uses the  
method of col locat ion t o  obtain the  solut ion.  It compares favorably with other 
solutions i n  the  l i t e r a t u r e ,  and far from the  ends agrees with the c l a s s i c a l  
solut ion f o r  an i n f i n i t e  s t r i p .  The f igures  show excellent agreement between 
the  f in i te -d i f fe rence  solut ion and the col locat ion solution and give some con- 
fidence t h a t  a su f f i c i en t ly  s m a l l  g r id  w a s  chosen fo r  the  e l a s t i c  f i n i t e -  
difference solut ion.  

Figure 5 compares the  p l a s t i c  solution a t  midspan of the rectangular p l a t e  
with the solut ion of reference 3. A strain-hardening material  i s  assumed, with 
a dimensionless tangent modulus of 0.1, as shown i n  f igure 2 (p. 5) .  Refer- 
ence 3 gives the  so lu t ion  of the  i n f i n i t e  s t r i p .  
favorably with others i n  the l i t e r a t u r e .  Unfortunately, the solution far from 

That solution a l so  compares 
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Figure 4. -Comparison of elastic stress solut ion in 3 by  1 plate w i th  elastic solut ion of reference 8. Proportionality con- 
stant, 5.7; parabolic chordwise temperature distribution. 
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in reference 3; proportionality constant, 5.7; parabolic chordwise temperature distribution. 
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the  ends i s  the only one available.  
ment between the  two i s  excellent.  

But it can be seen t h a t  again the  agree- 

- 

itant ,  5.7; paiabolic chordwise temperature d is t r ibut ion 

1 

I 
I 

I 

pl i s t  i c  

I1 
.7 . 8  .9  1.0 

Dimensionless spanwise coordinate, x/B 
Figure 7. - Equivalent plastic s t ra in  trajectories in square plate sub-  

jected to parabolic chordwise temperature distr ibution. 

Figure 6 compares the e l a s t i c  
solution throughout a square plate ,  
as given i n  reference 8, with the 
solut ion of t h i s  report .  
no discernable difference. 

There i s  

The remainder of t h i s  sect ion 
i s  devoted t o  the p l a s t i c  solut ion 
f o r  the  square p la te .  Figure 7 
shows p la s t i c - s t r a in  t r a j ec to r i e s  
for  the  maximum temperature d i s t r i -  
bution. The d is t r ibu t ion  i s  a l s o  
parabolic, having the form 
T = kly2, with kl = 20 f o r  t h i s  
f igure .  It is  assumed t h a t  k l  
s t a r t e d  a t  some small value pro- 
ducing no s t resses  exceeding the  
y i e ld  point and was  gradually in -  
creased t o  t he  value of 20 with no 
intermediate unloading. It was 
fur ther  assumed t h a t  there  w a s  no 
change i n  material properties with 
increasing temperature. The quan- 

* 

t i t y  p lo t ted  i s  the  summation of the increments of dimensionless equivalent 
p l a s t i c  s t r a in ,  as defined by equation (5 ) .  The curves are the  l o c i  of  a l l  
points of constant equivalent p l a s t i c  s t r a i n .  
f i rs t  quadrant of the  p l a t e  i s  shown. 
p l a t e  (as opposed t o  the one quadrant shown i n  the  figure) there  a re  f ive  
regions of p l a s t i c  flow. 
shape, being f la t tened  a t  the  diameters coincident with the  axes of the plate;  

Because of symmetry, only the 
The f igure  discloses t h a t  for  the en t i r e  

There i s  a region about the  center almost c i rcu lar  i n  
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there  a re  f o u r  other regions, i den t i ca l  i n  shape, along the  four s ides  of the 
p la te .  There i s  no p l a s t i c  flow a t  the  corners of the  plate .  Maxi" p l a s t i c  

1.0 

0 ._ 

n 

0 .1 . 2  . 3  . 4  . 5  .6 . 7  

l 
:I .a 

1.0 
Dimensionless spanwise coordinate, x/g 

Figure 8. - Curves o f  incipient plastic flow at various thermal loads 
in square plate subjected to parabolic chordwise temperature dis- 
tr ibution. 

flow occurs a t  the  centers of the  
four s ides ,  where the  p l a s t i c  
s t r a i n  i s  roughly three times as 
grea t  as a t  the center of the  
p la te .  Furthermore, the s t r a i n  
gradient is considerably steeper 
than t h a t  near t he  center .  

Figure 8 indicates the r a t e  
of growth of the  regions of plas- 
t i c  flow. The curves a r e  the  l o c i  
of a l l  points of incipient  p l a s t i c  
flow f o r  a given value of dimen- 
s ionless  temperature gradient.  
The curves.for kl = 20 a re  the  
same curves as the  curves of in-  
c ip ien t  p l a s t i c  flow i n  f igure 7 .  
P l a s t i c  flow s t a r t s  first a t  the 
centers of the  four sides  of the  
p la tes  and moves rapidly inward. 
P l a s t i c  f l o w  does not s tar t  a t  the  
center of the p la te  u n t i l  it is 
wel l  developed a t  the  s ides .  Once 
p l a s t i c  f l o w  has s t a r t e d  a t  the 
center,  however, the rate of 

growth of t h i s  zone is  greater  than a t  the  s ides .  

Ten increments of load were used to solve t h i s  problem. The increments 
varied between &l = 1.5  and &l = 2.5 and between kl = 1.5 ( t h e  l a rges t  . 

value of kl t h a t  produces no p l a s t i c  flow f o r  a parabolic thermal gradient)  
and kl = 20. A n  experiment w a s  run i n  which the increment s i ze  was gradually 
increased. It w a s  found that &q = 2.5 w a s  the  l m g e s t  increment t h a t  pro- 
duced no s igni f icant  change i n  the  f i n a l  answer. For very large increment 
s izes ,  the i t e r a t i v e  process would not converge. It is  d i f f i c u l t  t o  determine, 
however, which is the  optimum increment s i ze  fo r  any given problem. It is  a l s o  
d i f f i c u l t  t o  determine the optimum mesh s ize .  Good e l a s t i c  solutions were ob- 
ta ined with a mesh s i z e  twice a s  grea t  as the  0.05 by 0.05 used f o r  t h i s  dis- 
cussion. The la rger  mesh, however, w a s  t o o  coarse f o r  the  p l a s t i c  solut ion.  
Even the smaller mesh s i ze  made accurate p lo t t ing  of the s t r a i n  t r a j ec to r i e s  
d i f f i c u l t .  
r a t e  solution, but i n  view of the  checks discussed i n  the f i r s t  pa r t  of t h i s  
section, it is f e l t  t h a t  t h i s  mesh s i ze  is adequate. 

It i s  not known i f  a smaller mesh s i ze  would produce a more accu- 

Mnphy, i n  reference 9, w a s  able  t o  use a coarser gr id .  He solved a 
problem, however, involving proportional loading; that is, the r a t i o s  of prin- 
c ip l e  s t r e s ses  remained constant throughout t he  loading h is tory .  
mitted him t o  use deformation theory and presented no problem with the choice 
of loading increment. The choices of loading increment and g r i d  s i z e  a re  in- 
te r re la ted .  

This per- 

If a s m a l l  loading increment i s  chosen, the rate of growth of the  
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zone of p l a s t i c  flow i s  smaU, and a f i n e  g r i d  i s  necessary t o  detect  changes 
i n  the values of p l a s t i c  s t r a i n .  
example. A s  
t he  load is  gradually increased beyond the  point a t  which local ized yielding 
occurs, the  zone of p l a s t i c  flow i s  very s m a l l .  If the  g r id  i s  s o  coarse t h a t  
the  points immediately inside the p l a t e  boundary experience no p l a s t i c  s t r a in ,  
the solut ion does not change i n  two successive i t e r a t ions ,  and it must be con- 
cluded t h a t  convergence has occurred. I n  order t o  avoid t h i s  s i tua t ion ,  the . 

g r i d  must be f i n e  enough s o  tha t ,  with each increase i n  load, the s t r a i n  a t  
another set  of points  changes. 
h i s  loading increment w a s  the  f i n a l  load, and many points throughout t he  region 
experienced a p l a s t i c  s t r a i n .  

This can be i l l u s t r a t e d  by the  following 
P la s t i c  flow f i r s t  starts a t  the outer boundaries of t he  p la te .  

Wirphy did not encounter t h i s  problem because 

The las t  matter t o  be discussed i s  an approximate method t h a t  i s  some- 
This is the so-called s t r a i n  times used i n  p l a s t i c  f l o w  analysis  ( ref .  4) .  

invariance pr inciple .  Using t h i s  pr inciple ,  an e l a s t i c  analysis i s  made, even 
though it i s  known t h a t  p l a s t i c  f l o w  w i l l  occur. The s t resses  calculated w i l l  
be too high a t  those points where yielding has occurred, but i t  i s  assumed t h a t  
the  calculated t o t a l  s t r a i n s  a re  correct .  
correct  s t resses  and p l a s t i c  s t r a ins  may be determined by using the  s t r e s s -  
s t r a i n  curve f o r  t he  material. I n  a mult iaxial  case, the  equivalent s t r a i n s  
and stresses must be used i n  re fer r ing  t o  the  s t r e s s - s t r a in  curve. 
of the s t r a i n  invariance assumption uses a d i f f e ren t  s t r e s s - s t r a in  curve f o r  
determining the p l a s t i c  s t r a i n s .  
curve; t h a t  is, the  s t r e s s - s t r a in  curve i s  a s t r a i g h t  l i n e  of zero slope i n  the 
p l a s t i c  region; there  is  no strain-hardening. 
t ions  can now be investigated f o r  the  two problems under consideration. 

Therefore, an approximation t o  the  

A var ia t ion  

It uses an idea l ly  p l a s t i c  s t r e s s - s t r a in  

The v a l i d i t y  of these assump- 

I I I I  I l l  

& i n  d a r i a n c e  

Figure 9. - Percent e r r o r  in equivalent plastic s t ra in  at 
point of maximum s t ra in  for two approximations in 
long plate and short  plate subjected to parabolic 
chordwise temperature distr ibut ion.  

Shown i n  f igure  9 i s  the e r ro r  i n  
the  two d i f f e ren t  approximations a t  
various loads if the f i n i t e  difference 
solut ion i s  assumed cor rec t .  The f i g -  
ure  i s  for  the point of maximum plas- 
t i c  s t r a i n  i n  the  two plates ,  the  m i d -  
point of the  long s ide .  It i s  appar- 
ent  t h a t  f o r  both p la tes  there  i s  l e s s  
e r ro r  i n  the  computed p l a s t i c  s t r a i n  
when s t r a i n  hardening i s  neglected. 
In  the case of the  long plate ,  where a 
un iax ia l  state of s t r e s s  ex is t s ,  the  
s t r a i n  invariance approximation i s  
qui te  good. 
where a b i a x i a l  s t r e s s  s t a t e  ex is t s ,  
the  error i s  la rger  and nonconserva- 
t i v e .  The e r ror ,  however, may be 
acceptable by engineering standards. 

In  the  square plate ,  

C ONC LUSIONS 

It has been shown t h a t  two-  
dimensional problems involving p l a s t i c  

12 



flow can be solved by an extension of the method of successive approximations 
presented in reference 4. Furthermore, comparison between available solutions 
indicates a high order of accuracy. It must be emphasized that the procedure 
utilizes basic equations of great generality. Loading history, material prop- 
erties, exterior boundaries, and the stress-strain curve are a U  quite arbi- 
trary. 

Finally, it has been shown that the strain invariance approximation, 
neglecting strain-hardening, produces solutions of reasonable accuracy for two- 
dimensional problems. It must be noted that there is a greater error produced 
by that assumption in two-dimensional cases than in one-dimensional cases, and 
although the error is nonconservative, it may be acceptable by engineering 
standards. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 18, 1964 
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APPEXDIX A 

MATRIX INVERSION 

The solut ion t o  equation (12) i s  approximated by replacing the p a r t i a l  
d i f f e ren t i a l  equation by a corresponding difference equation and by solving the  
r e su l t an t  algebraic system i t e ra t ive ly .  The equation is  rewri t ten i n  the  
following form by first normalizing it by dividing the  x-coordinate by the 
span-to-chord r a t i o  p and then dividing a l l  terms by the  e l a s t i c  l i m i t  00. 

($E (Ala 1 

where 

The high order difference operators are derived f rom the  commonly used three- 
point f i r s t -order  difference operators. For example, i f  f = f ( x )  i s  a func- 
t i o n  of a s ingle  r e a l  var iable  x, then f '  i s  i t s  f i r s t  derivative,  and f "  
i t s  second derivative.  By cent ra l  differences,  

I 

where k i s  a dummy subscr ipt  indicat ing the kth value of f .  When r e l a -  
t i o n s  (A2)  are used, the l e f t  s ide of  equation ( A l a )  becomes 

+ (" + - 8 + 6)v;,j - 46 + F)q)i,j+l 1 *  + - 1 *  
P 4  'Pi,  j + 2  P 4  P2 
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O + + I I I  I { I I I I + I I I I I I I ,  I ,  

;+ + -- + + + + + + + + + + + + + + + + + + + 
2+ + - -+  + +  + + + + + + + + + + + + + + + + 
3+ +- -  + + + + + + + + + + + + +  + + +  + + 
4+ + -- + + + + + + +  + + + + + +  + + + + + + 
5+ + -- + + +  + + + +  + + + + + + + + +  + + + 
6 +  + -- + + + + + + + + + + + + +  + + +  +-F + - -  
7+ + --  + + + + + + + + + + + + + + + + + + + 
8+ + - - +  + + + + + + + + +  + +  + + +  + + + + 
9+ + - - +  + +  + + + + + +  + + + + + +  + + + + 
10+ + -- + + + + + +  + + + +  + + + +  + +  + + + 
11+ +- -  + + + +  + + + + + + + + + + + +  + + +- -  
12+ +- -  + + + + +  + + + + + +  + +  + + +  + + +--  
13+ + - - +  + + + + + + +  + + +  + + + + +  + +  + 
14+ +--  + + + + + + + + + + + + + + + + + + + 
15+ + -- + + + + + + + + + + + + + + + + + + + - -  

where A is  the increment of 16+ + -- + + + + + + + + + + + + + + + + + + +-- 
17+ + - - +  + + + + + + + + f +  + + + + + + + + -- 
18+ + -- + + + + + + + + + + + + + + + + + + + -- 
19+ + - - +  + + + + + + + + + 4- + +  + + + + + + -- 

X 

._ 
x- 
d .- c 
z 

-1 

Figure 10. - Normalized coordi- 
nate system used to determine 
state of stress in thermal ly  
loaded thin flat plate. 

both x and y, i i s  the row 

index. a+ + , : : I I I I I I I ! ! -# I ! ! I I ! I I 

index, and j i s  the  column 

j = l , .  . . , 2 1  

i = O , .  . . ,20 
j = l , .  . . , 2 1  

m +  

-- + 
-- + 

+ - - +  - -+  - -+  + 
-- + 
-- + 
-- + 
-- + 

+ 
+ 

-- + 
-- + + 

+ 
+ + + 
+ -x 

i = O , .  . . ,20 
Equations (A4) are equivalent t o  equations (13). 

Similar conditions apply a t  the  lower and l e f t  boundaries by symmetry; 
namely, 

j=l,. . . , 2 1  
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i = O , .  . . , 2 0  

Note tha t ,  i n  the  case of equations (A5), it i s  necessary t o  use two f i c t i c i o u s  
rows and columns, because the  difference equations a r e  wr i t ten  a t  points on the  
boundaries; whereas, i n  t he  case of equations ( A 4 )  t he  function 
on the boundary s o  t h a t  it i s  unnecessary t o  wri te  difference equations there .  

cp* is  known 

For the  problem under consideration i n  the  t ex t ,  the  temperature d is t r ibu-  
t i o n  i s  chosen so  t h a t  i t s  second der ivat ive is a constant. The expression f o r  
g* 
p l a s t i c  s t r a i n s  and t h e i r  derivatives a r e  not f u l l y  defined by the boundary 
conditions. Therefore, forward and backxard differences a re  used near the  
boundaries instead of introducing a r t i f i c i a l  rows and columns outside the 
boundaries. 
because nothing can be said about a r t i f i c i a l  s t r a i n s  lying outside the bound- 
a r i e s .  

i s  wr i t ten  i n  the  same way a s  the expression f o r  (p*, except t h a t  the  

It should be noted t h a t  t h i s  must be done f o r  the  function g* 

The p a r t i a l  d i f f e r e n t i a l  equation ( A l )  is now represented by 400 s h u l t a -  
neous algebraic equations. The equation i s  solved i t e r a t i v e l y  by guessing the  
values of the  p l a s t i c  s t r a i n  increments on the  r i g h t  s ide  and by solving f o r  
the  values of q* on the  l e f t  s ide,  as discussed i n  the t e x t .  The coeff i -  
c ien ts  of the  l e f t  s ide  do not change from i t e r a t i o n  t o  i te ra t ion ,  so  the most 
d i r ec t  method of solving the  system is t o  inver t  the coef f ic ien t  matrix and 
multiply the  inverse by the  r ight-s ide column vector.  
i s  qui te  lengthy. The obvious rimplication i s  tha t ,  i f  many i t e r a t ions  a r e  
necessary, t h i s  method requires the  l e a s t  amount of computing time, but if few 
i t e r a t ions  a r e  necessary, some other method is more e f f i c i e n t .  
under consideration, t he  former i s  the  case. 

The process of inversion 

For the  problem 

In  the process of solving the  problem, 150 i t e r a t ions  were used f o r  each 
increment of load t o  produce a su f f i c i en t ly  accurate solution; 10 loading in- 
crements were used. Had smaller loading increments been chosen, fewer i t e r a -  
t ions  per increment would have been necessary, but  no de f in i t e  statement can be 
made about the t o t a l  number of i t e r a t ions .  I n  f ac t ,  there  i s  no r a t iona l  pro- 
cedure f o r  determining a p r i o r i  the  proper increment s i z e  that w i l l  minimize 
the t o t a l  number of i t e r a t ions .  Hence, it appears t h a t  the d i r ec t  method of 
solving t h e  system, which makes use of the inverse, is  faster overa l l  than the  
ind i rec t  methods discussed i n  reference 10. Certainly, once t h e  inverse has 
been obtained, the time required f o r  obtaining a solut ion f o r  one r ight-s ide 
column vector i s  l e s s  than f o r  any other method. 

Obtaining the  inverse of such a large matrix presents two major problems. 
The f i r s t  i s  that of minimizing round-off errors ,  which can r e s u l t  i n  the l o s s  
of many s igni f icant  d i g i t s  due t o  the thousands of ar i thmetical  operations 
necessary t o  perform the  inversion. The second i s  the  detection and correction 
of random er rors  caused by the  generation of spurious b i t s  by the calculat ing 
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machine over the long period of operating time necessary to finish the problem. 
These two considerations suggest the method to be used for performing the in- 
version. 

The matrices generated by difference equations are quite sparse; that is, 
they contain very few nonzero elements, and these are clustered about the 
diagonal. This is suggested by the following illustration, which shows the 
250th to the 254th rows of the matrix (the a's merely indicating nonzero 
elements): 

. .  
209 O ' s ,  1 a, 18 O's, 3 a's, 16 0'6, 5 a's, 16 O ' s ,  3 a's, 18 O's, 1 a, l l 0  0 ' s  

210 0'6, 1 a, 18 O's,  3 a's, 16 0 ' 8 ,  5 a's,  16 O ' s ,  3 a ' s ,  lE 0 ' 8 ,  1 a, 109 0 ' s  

2I.l O's, 1 a, 18 O's, 3 a's, 16 O's,  5 a's, 16 O ' s ,  3 a's, 18 O's,  1 a, 108 0 ' s  

212 O ' s ,  1 a, lE O ' s ,  3 a ' s ,  16 O ' s ,  5 a ' s ,  16 O ' s ,  3 a ' s ,  18 O's,  1 a, 107 0 ' s  

I -  . .  . .  

It is seen that there are at most 13 nonzero elements in a row within a range 
of no more than 40 columns on either side of the diagonal; this suggests that 
the matrix be partitioned into 40 by 40 submatrices. 
figure 12. 

The result is shown in 
Each square represents one of the 40 by 40 submatrices. 

hatched squares are the only ones con- 
taining nonzero elements; the rest are 
null matrices. 
tridiagonal and is quite simple to in- 
vert by a straightforward Gauss-Jordan 
elimination procedure. Furthermore, 
only the 28 nonnull matrices need be 
stored in the computer. 

The cross- 

The resulting matrix is 

Several operations must be per- 
formed on the submatrices, namely, addi- 
tion, multiplication, and inversion. 
The Crout method suggests itself immedi- 
ately for inversion because it uses a 
check column, which permits rapid check- 
ing of the arithmetic operations at 

o 40 80 120 160 200 240 280 320 360 400 several stages of the process. This 
Column index, j check column can also be used in the 

processes of matrix multiplication and 
addition, eliminating the problem of 

Figure 12. - Partit ioned coefficient matrix. 

spurious bit generation by the computing machine. 
the extra column is checked. If the check fails, the operation is repeated. 

After each matrix operation, 

The only place where any significant round off occurs is in the process of 
inverting the submatrices. 
proving the accuracy of the elements of an inverse. Assume Do is an approxi- 
mation to the inverse A-1 of a square matrix A. Then a more accurate 
approximation D1 is given by 

Reference 10 gives the following method of im- 
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where I is the unit matrix. 

Assuming that Do is accurate enough to provide a good starting value, 
relation (A6) leads to an iterative process that will produce an inverse to 
any desired degree of accuracy. Experiments conducted on 40 by 40 matrices of 
various types showed that D1 was accurate to at least eight significant 
digits when Do was produced by the Crou-t method. This permits the inversion 
of the 400 by 400 matrix to be performed in single precision arithmetic. 
the entire inverse of the 400 by 400 matrix was obtained, a single iteration 
using equation (A6) was performed to improve the accuracy of its elements. 
accuracy of the overall process was checked by both premultiplying and post- 
multiplying the 400 by 400 inverse by the original coefficient matrix and by 
investigating the residuals. 
arithmetic, although it is doubtful that such care was needed for matrix multi- 
plication. 
fourth place or less. 

After 

The 

The operation was performed in double-precision 

The residuals were gratifyingly small, of the order of one in the 
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APPENDIX B 

CONVERGENCE 

The problem of the convergence of an i t e ra t ive  process is  a nebulous one. 
It depends on the  s t a b i l i t y  of the calculat ion procedure, the  s t a r t i n g  values 
chosen, the number of s t a t ions  a t  which convergence i s  demanded, and the  degree 
of accuracy desired, t o  mention a few of the more obvious factors .  For t h i s  
problem, convergence i s  required a t  s i x  stations on the  boundaries and i n  the  
in te r ior ;  a l l  were chosen because of foreknowledge of high p l a s t i c  s t r a i n s  a t  
these points.  The degree of accuracy required i s  high f o r  engineering pur- 
poses. 
cant d i g i t  a r e  obtained. 

In general, solutions accurate t o  be t t e r  than one i n  the  t h i r d  s ign i f i -  

Any i t e r a t i v e  procedure i s  sensit ive t o  s t a r t i n g  values. Even i n  the  most 
s t ab le  of procedures a good s t a r t i n g  value can reduce the number of i t e r a t ions  
required t o  converge t o  the  desired degree of accuracy. In an unstable proce- 
dure, the  choice of a s t a r t i n g  value can mean the  difference between converging 
and not converging. In a problem as lengthy as t h a t  considered i n  t h i s  report ,  
any device tha t  reduces the t o t a l  computing time is worth investigating regard- 
less of the complexity of programing. For t h i s  problem, the  best  guess ava i l -  
able  is  t h a t  produced by the so-called s t r a i n  invariance principle,  as dis-  
cussed i n  the t ex t .  Furthermore, t h i s  solution was desired, i n  any event, f o r  
purposes of comparison. Therefore, it w a s  decided t h a t  these would be the 
s t a r t i n g  values used. 

An investigation w a s  conducted, however, t o  determine precisely t o  what 
extent convergence i s  hastened by t h i s  procedure. 
Compared t o  s t a r t i n g  with an i n i t i a l  guess of zero fo r  a l l  p l a s t i c - s t r a in  in-  
crements, only about 10 i t e r a t ions  a re  saved out of a t o t a l  of approximately 
150. The p l a s t i c - s t r a in  increments approach the converged values very rapidly 
i n  the  f irst  few i te ra t ions ,  and then the process s lows down enormously. It 
i s  possible tha t ,  i f  solutions of extremely high accuracy a re  desired, t o  one 
un i t  i n  the  f i f t h  or s i x t h  s ign i f icant  d i g i t ,  f o r  example, the process would be 
prohibi t ively long. For a problem of t h i s  type, however, it w a s  decided t h a t  
convergence t o  one u n i t  i n  the  t h i r d  decimal place i s  more than adequate. The 
la rger  s t r a i n  increments a r e  of the order of unity, s o  t h i s  c r i t e r i o n  r e s u l t s  
i n  be t t e r  than t h i r d  place accuracy i n  the regions of grea tes t  s t ra in .  For 
normal engineering accuracy, fewer i t e r a t ions  would be necessary. A t  those 
s t a t ions  where p l a s t i c  flow i s  j u s t  beginning t o  occur, and the increment of 
p l a s t i c  strain is  qui te  small, the  value osc i l l a t e s  by more than one i n  the 
t h i r d  decimal place long after the la rger  increments have converged. Inasmuch 
as any error i n  these small increments is  masked i n  the very next increment of 
loading because the next increment of p l a s t i c  s t r a i n  i s  generally a t  least two 
orders of magnitude greater ,  it w a s  a r b i t r a r i l y  decided t o  s top the process 
a f t e r  150 i t e r a t ions .  Experiments w e r e  run t o  determine i f  the answers changed 
s igni f icant ly  f o r  greater numbers of i t e r a t ions ,  and i n  a l l  cases intermediate 
output w a s  investigated t o  ensure that the la rge  s t r a i n  increments had indeed 
converged and that the  s m a l l  ones were close t o  convergence. 
low loads where p l a s t i c  flow is  occurring a t  only a few points, f o r  example, 

The r e s u l t  i s  disappointing. 

* 

In  many cases, a t  
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every point converges i n  less than the 150 i t e r a t i o n  l i m i t .  

The calculat ion procedure f o r  determining p l a s t i c  s t r a i n s  fo r  a given 
loading increment, when s t r e s s - s t r a in  equations are used, presents ce r t a in  
d i f f i c u l t i e s .  If p l a s t i c  s t r a i n s  a r e  determined f rom the  stresses, the  method 
is  r e l a t i v e l y  unstable because the s t r e s s - s t r a in  curve is  very f l a t  i n  the 
p l a s t i c  region. 
and the  procedure is  qui te  sens i t ive  t o  the  s i z e  of the  loading increment and 
t o  the  s t a r t i n g  values. 
provement i n  s t a b i l i t y  by calculat ing the  increment of equivalent p l a s t i c  
s t r a i n  from the assumed p la s t i c - s t r a in  components and by determining equivalent 
s t r e s s  from the  s t r e s s - s t r a in  curve. 

A . s m a l l  change i n  stress produces a la rge  change i n  s t r a in ,  

The method of t h i s  report  produces a considerable i m -  

Un t i l  convergence occurs, the value of equivalent s t r e s s  from the  s t r e s s -  
s t r a i n  curve does not agree with the  value of equivalent s t r e s s  calculated 
from equation ( 6 ) .  Thus, convergence is  slowed, and again, i f  the loading in- 
crement i s  too large,  the problem may diverge. 
i s  presented tha t ,  i n  other problems of t he  same type a s  the  one being d is -  
cussed, has proved t o  be considerably more stable (converges more rap id ly)  and 
t h a t  permits the  use of l a rge r  loading increments. Experiments have been con- 
ducted i n  which both methods were used t o  solve the same problem, and they con- 
verged t o  iden t i ca l  answers. This method rederives the  Prandtl-Reuss equations 
i n  a form t h a t  does not contaiu the s t r e s ses  a t  a l l ,  and hence does not suf fe r  
the  aforementioned disadvantages. Writing the s t r e s s - s t r a in  re la t ions  f o r  
generalized plane s t r e s s  i n  conventional x,y,z-coordinates gives 

I n  t h i s  appendix another method 

n - l  

i=l 
+ X N p , i  + &p,n 

I t - v  y = -  
E 

When the e l a s t i c  par t s  of the  s t r a ins  a r e  designated by a superscr ipt  e, the  
equations can be rewri t ten a s  
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A modified t o t a l  s t r a i n  i s  now defined as  follows: 

The basic assumption of Prandt l  i s  tha t ,  a t  any in s t an t  of loading i n  the  
p l a s t i c  range, the p l a s t i c - s t r a in  increments are proportional t o  the respective 
instantaneous s t r e s s  deviations, which i n  the notation of t h i s  paper i s  equiva- 
l e n t  t o  

where M is  an instantaneous nonnegative constant of proportionali ty,  which 
may vary throughout the  loading program. 
yields  

Combining equations ( B 3 )  t o  ( B 5 )  

I 
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where K i s  a constant.  F’rom t h i s  it follows t h a t  

Defining 

and 

y ie lds  

A€ K =  M =e,p 
M + E ‘e,t 

Making use of the incompressibil i ty assumption 

Ex,p + Ey,p + Ez,p = O (BlJ-1 

and solving equation (B6) f o r  the individual s t r a in  increments y ie ld  

(B12a) 

(B12b) 

A€z,p = -AEx JP - AEy,p ( B l Z c )  

(B12d)  

t o  the  Now a l l  t h a t  remains is  t o  r e l a t e  the values of AEe,p and E e, t 
s t r e s s - s t r a in  curve. 
p l a s t i c - s t r a in  increment (eq. ( B 8 )  1, and equivalent s t r e s s  (eq.  ( 6 ) )  y ie lds  

Combining the re la t ions  for M (eq.  (B5 )), equlvalent 
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Combining equations (B10) and (B13) produces 

Let the value of Oe at the end of any given loading increment be desig- 
nated by 
nated by Oe,i-l. An expression for Oe can then be written in a Taylor 
series and approximated as follows if terms of high order are neglected and 

Oe,i and the value at the end of the preceding increment be desig- 

differential-operators are replaced 

N - Oe,i - Oe,i-l 

Combining equations (B14) and (B15 ) 

with difference operators: 

yields 

Thus, a strain-strain relation can be derived from a stress-strain curve 
by using equation (B16). It is to be noted that, for linear strain-hardening, 
equation (B16) is exact. Inasmuch as most stress-strain curves are nearly 
flat, equation (BE) is very nearly exact; and the strain-strain curve is very 
nearly a straight line having a slope of unity. Therefore, an iterative 
process utilizing the strain-strain curve is more rapidly convergent than one 
utilizing the stress-strain curve. The iterative procedure for determining the 
plastic-strain increments is as follows: 

(1) Obtain elastic solution. 

( 2 )  Guess plastic-strain increments. 

(3) Calculate the corresponding "modified" total strains from equa- 
tions (B4) and evaluate E e,t from (BY). 

(4) Find from equation (B16). 

(5) Calculate a new set of plastic-strain increments from equations (BE). 

(6) Repeat steps 3 to 5 until succeeding values of plastic-strain in- 
It is to be noted that, as 
produced from equation (B16) 

crements are sufficiently close to each other. 
convergence is approached, the value of DEe,p 
approaches the value calculated from equation (B8). 
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